B.E. COMPUTER ENGINEERING

Scheme of Instructions				Scheme of Evaluation						
Subjects		Lect/	Prac/	Tuto/	Paper		Τ/		Oral	Total
3						-	W	Prac		
								/		
		Week	Week	Week	Hours	Marks)	
1	System Security	4	2		3	100	25		25	150
2	Distributed Computing	4	2		3	100	25		25	150
3	Multimedia System	4	2		3	100	25		25	150
4	Elective – II	4	2		3	100	25		25	150
5	Project – B	-	-	6		-	50	ļ	50	100
		16	8	6		400	15		150	700
							0			

B.E. SEMESTER VIII

1	Robotics	
2	Computer vision	
3	Parallel Processing	
4	Data Warehousing and Mining	
5	Neural Networks and	
	Fuzzy Systems	
6	Software Testing	

6 Software Testing

B.E. COMPUTER ENGINEERING FOURTH YEAR SEMESTER VIII

SUBJECT : SYSTEM SECURITY

Lect : 4 Hrs per week Prac : 2 Hrs per week Theory: 100 Marks Term work: 25 Marks Oral: 25 Marks

Objective of the course: Learn about the threats in computer security. Understand what puts you at a risk and how to control it. Controlling a risk is not eliminating the risk but to bring it to a tolerable level. Pre-requisites: Computer Networks, Operating Systems.

DETAILED SYLLABUS

- 1. Introduction: Security, Attacks, Computer Criminals, Method of defense
- 2. Cryptography: Basic Cryptography: Classical Cryptography, Public key, Key generation, Cryptography key infrastructure, storing and revoking keys, Hash Algorithm ,Digital stricture, Cipher Techniques : Problems, Stream and block ciphers: AES, DES, RC4.
- 3. Program Security: Secure programs, Non-malicious program errors Viruses and other malicious code, Targeted malicious code, Controls against program threats.
- 4. Operating system security: Protected objects and methods of protection, Memory address protection, Control of access to general objects, File protection mechanism, Authentication: Authentication basics, Password, challenge-response, Biometrics.
- 5. Database security: Security requirements, reliability and integrity, Sensitive data, interface, multilevel database, Proposals for Multilevel security.
- 6. Security In Networks: Threats in networks, Network security control, Firewalls, Intrusion detection systems, Secure e-mails, Network and cryptography, Examples protocols: PEM, SSL, IPsec.
- 7. Administrating Security: Security planning, Risk analysis, Organizational security policies, Physical Security.

Legal Privacy, and Ethical Issues in Computer Security: Protecting programs and data, information and law, Rights of employees and employers, Software failures, Computer crime, Privacy, Ethical in computer society, Case studies of ethic

Books

Text Books:

- 1. Stallings, "Cryptography and Network Security: Principle and practice"
- 2. C.P. Pfleeger, and S.L. Pfleeger, "Security in Computing", Pearson Education.
- 3. Matt Bishop, "Computer Security: Art and Science:, Pearson Education.

References:

- 1. Kaufman, perlman, Speciner, "Network Security"
- 2. Eric Maiwald, "Network Security: A Begineer's Guide", TMH
- 3. Bruce Schneier, "Applied Cryptography", John Wiley.
- 4. Macro Pistoia, "Java Network Security", Pearson Education
- 5. Whitman, Mattord, "Principles of information security", Thomson

TERM WORK

11. Term work should consist of at least 10 Practicals experiments and two assignments covering the topics of syllabus.

ORAL EXAMINATIONS

An oral examination is to be conducted on the above syllabus,

B.E. COMPUTER ENGINEERING				
FOURTH YEAR SEMESTER VIII				
SUBJECT: DISTRIBUTED COMPUTING				
Lectures: 4 Hrs per week	Theory:100 Marks			
Practical: 2 Hrs per week	Term Work:25 Marks			
	Oral:25 Marks			
Objective: This course aims to build conce	pts regarding the fundamental			
principles of distributed systems. The design	gn issues and distributed operating			
system concepts are covered.				
Pre-requisites: Operating Systems & Cor	nputer Networks.			
DETAILED	SYLLABUS			
1. Introduction to Distributed Systems	: Goals, Hardware concents, Software			
concepts, & Client-Server model. Ex	amples of Distributed systems.			
2. Communication: Layered Protocols, R	Remote procedures call, Remote object			
invocation, Message-oriented commun	lication, Stream-oriented communication.			
3. Processes: Threads, Clients, Serv	ers, Code Migration, Software agent.			
4. Naming: Naming entities, Locat referenced entities.	ing mobile entities, Removing un-			
 Synchronization: Clock Synchronization, Logical clocks, Global state, Election algorithms, Mutual Exclusion, Distributed transactions. 				
6. Consistency & Replication: Introduction, Data centric consistency models, Client centric consistency models, Distributed protocols, Consistency protocols.				
7. Fault Tolerance: Introduction, Process	s resilience, Reliable client server			
communication, Reliable group comm	unication. Distributed commit, Recovery.			
8. Security: introduction, Secure channels, Access control, Security management.				
9. Distributed The System. Suithetw	ork me system, CODA me system.			
10. Case Study: CORBA, Distributed COM, Globe, Comparison of CORBA, DCOM, & Globe.				
BOOKS				
Text Books:				
1. A. Taunebaum,"Distributed Systems: Principles & Paradigms"				
2. G. Coulouris, J. Dollimore, & T. Kindberg, "Distributed Systems:				
Concepts & Design", Pearson Education.				
References:				
1. M.Singhal, N. Shivaratri, "Advanced Concepts in Operating Systems", TMH.				
TERM WORK				
12.Term Work should consist of at least 10 practical experiments and 2				
assignments covering the topics of the syllabus				

ORAL EXAMINATION
An oral examination is to be conducted based on the above syllabus

B.E. COMPUTER ENGINEERING				
FOURTH YEAR SEMESTER VII				
SUBJECT: MULTIMEDIA SYSTEMS				
Lectures: 4 Hrs per week	Theory:100 Marks			
Practical: 2 Hrs per week	Term Work:25 Marks			
	Oral:25 Marks			
Objectives of the course: This course teach integrate multiple media on computers. St capturing, compressing, processing, manij and retrieving various kinds of continuous Pre-requisites: Operating Systems, Com	hes students to collect, and intelligently sudents learn the issues involved in pulating, searching, indexing, storing s media in the text section.			
DETAILED	SYLLABUS			
 11. Multimedia systems introduction: Multimedia applications, multimedia systems architecture, evolving technologies for multimedia systems, defining objects for multimedia systems, multimedia data interface standards 12. Compression and Decompression: Types of compressions, binary image compression schemes, color gray scale, still video image compression, video image compression, audio compression, fractal compression, data and file format standards: rich text format, TIFF, RIFF, MIDI, JPEG, AVI, MPEG. 13. Multimedia I/O technologies: Key technologies issues, pen input, video and image display system, printout technology, image scanner, digital voice and audio, full motion video. 14. Storage and retrieval technologies: Magnetic media technology, optical media, hierarchical storage management, cache management for storage systems, image and video databases: indexing and retrieval 15. Architectural and telecommunications considerations: Specialized computational processors, memory systems, multimedia board solutions, 				
multimedia across wireless, distributed object models 16. Multimedia networking: Multimedia networking applications, streaming stored audio and video, RTP, scheduling and policing mechanisms, integrated services, RSVP				
17. Multimedia application design: Multimedia application classes, types of multimedia systems, virtual reality design, components of multimedia systems, organizing multimedia databases, application workflow design issues, distributed application design issues, applications like interactive, television, video conferencing, video on demand, educational applications and authoring, industrial applications, multimedia archives and digital libraries				
18. Multimedia authoring and user interface: Multimedia authoring systems, hypermedia application design considerations, user interface design, information access, object display or playback issues.				
19. Hyper Media Messaging: Mobile messaging, hyper media message components, hyper media linking and embedding, creating hyper media messages, integrated multimedia message standards, integrated document management, The World Wide Web, open hyper media systems, content based navigation.				

- 20. Distributed multimedia system: Components of distributed multimedia systems, distributed client server operation multimedia object server, multi-server network topologies, distributed multimedia database, managing distributed objects
- 21. Multimedia system design: Methodology and consideration, multimedia system design examples

BOOKS

Text	Books:
------	--------

- 3. Prabhat K. Andheigh, Kiran Thakrar, 'Multimedia systems design', PHI, John F.
- 4. Koegel Buford, 'Multimedia Systems', PEA.

References:

- 2. Free Halshal, 'Multimedia Communications', PEA.
- **3.** R. Steimnetz, K. Nahrstedt, 'Multimedia Computing, Communications and Applications', PEA
- 4. K. R. Rao, D. Milovanovic, 'Multimedia Communications Systems: Techniques, Standards and Networks"
- 5. Surbrahmanian, 'Multimedia Database Systems', M. Kaufman
- 6. J. D. Gibson, 'Multimedia Communications: Directions and Innovations', Academic Press, Hardcourt India
- 7. J. F. Kurose, K. W. Ross, 'Computer Networking', PEA.

TERM WORK

Term Work should consist of at least 10 practical experiments and 2 assignments covering the topics of the syllabus study of advanced embedded systems.

ORAL EXAMINATION

An oral examination is to be conducted based on the above syllabus

B.E. COMPUTER ENGINEERING FOURTH VEAR SEMISTER VIII				
FUERT + Deboties (Floative II)				
SUBJECT : RODOTICS (Elective –II)				
Lectures : 4 Hrs Per Week	Theory Papers (5 Hours): 100			
Practicals: 3 Hrs Per week	Term work : 25 Orali 25			
	Oral: 25			
Rationale: This Course Familarizes sturobot manipulator control, enough to engineering systems.	idents with the concepts & techniques in evalute, choose, and incorporate robot in			
DETAIL	ED SYLLABUS			
Robotic Automation and Robots,Classification	Manipulation Application,Spcification,Notations			
Direc	t kinematics			
Dot and Cross Products,Co-ordinate f ordinates,Link Co-ordination arm equ Robot.six-axis Robot)	rames,Rotations,Homogeneous ,Co- lation,(five-axis Robot,Four-axis			
Invers	se kinematics			
General Properties of Solutions Tool C -axis ,Six-axis Robot(Inverse kinemati	General Properties of Solutions Tool Configration, five-axis Robot, Three-Four -axis, Six-axis Robot (Inverse kinematics)			
Workspace analysis and trajectory pla examples,workspace fixtures,pick & p Motion,Interpolated Motion,Straight	nning work envelope & lace operations,Continious Path line Motion			
Ro	bot Vision			
Image Reprsentation, Templet Matching, poly Hedral Objects, Shane Analysis, Segmentation (Thresholding, Region Labeling, Shirnk Operators, Swell Operators, Euler numbers, Prespective Transformation, Structured illumanation camara calibiration)				
Task Planning				
Task Level Programming Uncertanity Configuration Space Gross				
Motion, Planning, Grasp Planning, Fine Motion Planning, Simulation of				
planer motion, source and goal scenes, Task Planner Simulation				
Moments of Inertia				
Principle of NC and CNC Machines				
BOOKS				
Text Books:				
1.Robert Shilling ,Funadamentals Of Robotics –Analysis And Control,Prentice Hall of India				
2.Fu ,Gonzales and Lee , Robotics, McGraw Hill 3.J.J.Craig , Introduction To robotics , Pearson Education				

Additonal Reading

1. Staughard ,Robotica And A.I ,Prentice Hall of India

2. Grover, Wiess , Nagel , Oderey , "Industrial Robotics", McGraw Hill 3. Walfarm Stdder. Robotics and Mechatronics,

4. Niku ,Introduction To Robotics, Pearson Education

5. Klafter , Chmielewski, Negin , Robot Engineering , Prentice Hall of India 6. Mittal , Nagrath, Robotics and Control , Tata McGraw Hill Publications

TERM WORK:

1. Term Work should consist of atleast 10 practicals and assignments covering the topic of the syllabus .

2. A term work test sall be conduted with a weightage of 10 marks

ORAL EXAMINATION

An oral examination is to be conduted based on the above syllabus.

B.E. COMPUTER ENGINEERING		
FOURTH YEAR SEMISTER VIII		
SUBJECT : Computer Vision (Elective –II)		
Lectures : 4 Hrs Per Week	Theory Papers (3 Hours): 100	
Practicals: 2 Hrs Per Week	Term Work : 25	
	Oral: 25	

Objective: To introduce the student to computer vision algorithms, methods, concepts which will enable the student to implement computer vision system with emphasis on applications and problem solving.

Pre-requisite: Introduction to image processing.

Detailed Syllabus

- 1. Recognition methodology : Conditioning labeling, grouping, extracting, matching. Edge detection, gradient based operations, morphological operations, spatial operators for edge detection.
- 2. Binary Machine Vision: thresholding, segmentation, connected component labeling, hierarchical segmentation, spatial clustering, split and merge, rule based segmentation motion based segmentation.
- 3. Area Extraction : Concepts data structure , edge , line linking , Hough transform , line fitting , curve fitting,
- 4. Region Analysis: Region properties, External points. Spatial moments, mixed spatial moments, gray level moments, boundary analysis: signature properties, shape numbers.
- 5. Facet model recognition : labeling lines , understanding line drawing classification shapes by labeling of edges , recognition of shapes consisting labeling problem , back tracking , inverse perceptive projecting , photogrammetry image matching : intensity matching of 1D signals , matching 2D images, hierarchical image matching .
- 6. Object Models and Matching: 2D representation global Vs local features.
- 7. General frame work for matching: distance relational approach , ordered structure matching , view class matching , model database organization .
- 8. General Frame work: : distance relational approach , ordered structure matching , view class matching , model database organization .
- 9. Knowledge based vision: knowledge representation control strategies information integration.

BOOKS

Text Books:

- 1. David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach"
- 2. R. Jain. R. Kasturi, and B. G. Schunk, "Machine Vision", McGraw-Hill.

References:

- 1: Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Thomson Learning
- 2. Rober Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison-Wesley, 1993.

Term Work

14. Term work should consist of at least 10 practical experiments and two assignments covering the topics of the syllabus.

ORAL EXAMINATION

An oral examination is to be conducted based on the above syllabus.

B.E. COMPUTER ENGINEERING				
FOURTH YEAR SEMESTER VII Subject:Parallel Processing (Flective_II)				
Lectures:4 hrs Per Week Theory:100 Marks				
Practical: 2 hrs Per Week	Term Work: 25 Marks			
	Oral: 25 Marks			
Objectives:Upon completion of this course students will be able to undersated and employ the fundamental concepts and mechanisms which forms the basis of the design of the parallel computation models and algorithms, recognize the problems and limitations to parallel systems, as well as possible solutions.				
Prerequisite:Computer Architecture,Data Structures. DETAILED SYLLABUS				
 Introduction: Parallel processing architectures: Parallelism in sequential machines, Abstrct model of parallel computer, Multi processor architecture, Pipelining, Array Processors. Prgrammability Issues: An overview, Operating system support, types of 				
 operating systems, Parallel programming models, Software tools. 3. Data Dependancy Analysis: Types of dependencies: Loop and array dependencies, Loop dependence analysis, Solving diophantine equations, Program transformations. 				
4. Shared Memory Programming: Memory Programmming, Process	general model of Sheared model under UNIX.			
5. Algorithms For Parallel machines: Speedup,Coplexity and cost,Histogram composition,Parallel reduction,Quadrature problem,matrx multiplication,parallel sorting algorithms,Solving linear systems,Probabilistic algorithms.				
6. Message Passing Programming:introduction,Model,Interface,circuit satisfability,introducing collective,Benchmarking parallel performance.				
7. Parallel Programming Languages:	Fortran90,nCUBE C,Occum,C-Linda.			
8. Debugging Parallel Programs:Debugging techiniques, Debugging message passing parallel pragrams, Debugging Sheared Memory Parallel Programs.				
9. Memory and I/O subsystems:Hierachical memory structure,Virtul				
memeory system, Memory allocation and management, Cache allocation and management, Cache memory and managemenInput output subsystems.				
10. Other parallel Paradigms: Data flow computing, systolic architectures functional and logic paradigms distributed shared memory				
11. Performance of Parallel Processors:Speedup and efficency,Amdahl's Law,Gustafson-Barsis law,Karf-Flatt metric,Isoefficency metric.				

BOOKS			
Text Books:			
1. hawang Kai and Briggs F. A." <i>Computer Architecture and Parallel Pracessing</i> "			
2. Jorden H. F. and Alaghaband G.,"Fundamentals of Parallel Pracessing"			
3. M.J. Quinn"Parallel Programming",TMH			
References:			
1. Shshikumar M.," Introduction to Parallel Processing", PHI			
2. Wilson G.V."Prctical parallel Programming", PHI.			
3. D. E. Culler, J.P. Singh, A.Gupta," Parallel Computer			
Architecture", Morgan Kaufman			
TERM WORK			
Term work should consist iof at least10 practical experiments and two			
assignments covering the topics of the synabus.			
ORAL EAAMINATION			
All of al examination is tor be conducted based on the above synabus.			
An oral examination is toi be conducted based on the above syllabus.			

B.E. COMPUTER ENGINEERING				
FOURTH YEAR SEMESTER VIII				
SUBJECT : DATA WAREHOUSING AND MINING				
Lectures : 4 Hrs Per Week	Theory Papers (3 Hours): 100			
Practicals: 2 Hrs Per Week	Term Work : 25			
	Oral: 25			
Objectives Of the course :	•			
The Data Warehousing part of module	aims to give students a good overview of the			
ideas and techniquies which are behind	l recent development in the dataweresing and			
online Analyatical Processing (OLAP)	fields, in terms of data models, query			
af the model aims to motivate Define a	gles, and storage techniques, Data mining part nd Characterize data mining as process: to			
motivate define and Characterize data	as process, to			
Prerequisities: DBMS	4.5			
DETAIL	ED SYLLABUS			
DATA WAREHOUSING:				
1. Overview And Concepts:Need Of Data werehousing,Trends in	For DATA WAREHOUSING,Basic Elements DATA WAREHOUSING			
2. Planning And Requirments:Pro	oject Planning And Management,Collecting			
The Requirments.				
3. Architecture and Infrastructur And Metadata.	e:Architectural Components, Infrastructure			
4. Data Design And Data Represen	ntation:Principles of			
Dimensional Modelling, Dimens	ional Modelling Advanced			
topics,data extraction,transform	iātion and loading,data quality.			
5. Information Access and Delivery users OLAP in data Werehouse I	:Matching Information to Classes of Data Werehousing And the Web			
6. Implimentation And Main	tenance: Physical Design Process. Data			
Werehouse Deployment.Growth And Maintenance.				
DATA MINING:				
1. Introduction : Basics of Data Mining, Related Concepts, Data Mining Techniques.				
2. Data Mining Algorithms: Classification, Clustring, Association Rules.				
3. Knowledge Discovery: KDD Process				
4. Web Mining:Web Content Mining,Web Structure Mining,Web Usage Mining.				
5. Advanced Topics:Spatial Mining, Temporal Mining.				
6. Visulisation: Data Generalization and Summarization-based				
Characterization, Analyatical Characterization: Analysis of Attribute				
Relevance, Mining claa comparisions: Discriminating Between Different				
7 Data Mining Descriptive Statistical Measures in Large Databases				
7. Data Mining Primitives, Languages, And System Architecture: Data Mining Primitives Query Language Desining CUI Resed On Data Mining				
Ouery Language, Architecture of data Mining Systems				
8. Application and Trends in Data Mining Application Systems products and				
research prototypes, additional th	emes in data mining , Trends in data mining			

BOOKS
Text Books:
1. Paulraj Ponnian,"Data Warehousing Fundamentals", John Wiley.
2. M.h.Dunham," <i>Data Mining Introductory And Advanced Topics</i> ",Pearson Education.
3. Han,Kamber,"Data Mining Concepts And Techniques ",Morgan Kaufmann
Referances:
1. Ralph Kimball," The Data Warehouse LifeCycle Tool Kit", John Wiley.
2. M Berry And G.Linoff," <i>Mastering Data Mining</i> ", John Wiley
3. W.H.Inmon,"Building The Data Warehouse",Wiley Dreamtech.
4. R.Kimpall," The Data Warehouse Tool Kit", John Wiley 5. F.G. Mallach "Decision Support And Data Warehouse Systems" TMH
TERM WORK
Term work should consist of atleast 10 practical experiments and 2 assignments covering the topics of the syllabus
ORAL EXAMINATION
An Oral Examination is to be conducted based on the above syllabus.

B.E. COMPUTER ENGINEERING				
<u>FUURIH YEAR SEMESTER VIII</u> Subject · Neural Networks & Fuzzy Systems (Flective – II)				
Lect · 4 Hrs per week Theory · 100 Mark				
Proc · 2 Hrs per week	Term work • 25 Marks			
Trac : 2 ms per week	Oral : 25 Marks			
Objective: This course covers basic cone	onts of artificial noural natworks fuzzy			
logic systems and their applications. Its f	focus will be on the introduction of the			
basic theory, algorithm formulation and	ways to apply these techniques to solve			
real world problems.				
Pre-requisite: Knowledge of calculus, ba required. Background of following subje (including optimization). Programming desirable : Matlab, MathCad, C, Java, C	sic probability and statistics are ects desirable : numerical analysis skill in one of the following would be C++			
DETAILED SYLLABUS	.0.			
1. introduction: Biological neurons, McCulloch and pitts models of neuron, Types of activation function, Network architecture, Knowledge representation, Learning Process: Error-correction learning, Supervised learning, Unsupervised learning, Learning rules				
 Single layer Perception: Perceptron converges theorem, Method of steepest Descent – least mean square algorithm. 				
3. Multi layer Perceptron: Derivation of the Back-propagation algorithm, Learning factors.				
4. Radial Basis and Recurrent Neural I	Networks: RBF networks structure,			
theorem and the reparability of patt	erns, RBF Learning Strategies, K-means			
and LMS Algorithms, Comparison o	of RBF and MLP Networks, Hope Field			
Networks, Energy Functions, Spurio	us States, Error performance.			
5. Simulated Annealing: The Boltzmann Machine, Boldzmann Learning rule, Bi-directional associative memory.				
6. Fuzzy Logic : Fuzzy sets, propert	ies, Operations on Fuzzy sets, Fuzzy			
relations, Operation some Fuzzy	Relations, The Extension Principle,			
Fuzzy measures, Membership Fu	Fuzzy measures, Membership Functions, Fuzzification and			
depuzzincation methods, ruzzy Controners.				
Books				
1. Simin Haykin, "Neural Network a – Co	omprehensive Foundation", Pearson Education			
2. Zurda J.M., "Introduction To Artificial Neural Systems", Jaico Publishers				
5. I nimothy J. Koss, "Fuzzy Logic with Engineering Applications", McGraw Hill 4 Ahmad Ibrahim "Introduction To Applied Fuzzy Electronics" PHI				
Refer	ences:			
1. Yegnanarayana B., "Artificial N	eural Network", PHI			
2 Detabase D. Hall and a son H. and Detabase L. M. " France Constance				

2. Drinkov D., Helloendoorn H. and Reinfrank M., "Fuzzy Systems Desings Principle", IEEE Press.

TERM WORK

11. Term work should consist of at least 10 Practicals experiments and two assignments covering the topics of syllabus.

ORAL EXAMINATIONS

An oral examination is to be conducted on the above syllabus.

B.E. COMPUTER ENGINEERING FOURTH YEAR SEMESTER VIII

SUBJECT : PROJECT - B

Tutorial: 6 Hrs per week

Term work : 50 Marks

Oral : 50 Marks

GUIDELINES

- 1. project-B exam be conducted by two examiners appointed by university. Student have to give demonstration and seminar no the Project-B for them work marks. All the students of the class must attend all the seminars. Seminar should be conducted continuously for couple of days.
- 2. Project-B should contain :
 - □ Introduction and Motivation, Problem Statement, Requirement Analysis, Project design, Implementation Details, Technologies used, Test cases, Project time line, Task Distribution, references, and Appendix consisting of user Manuals.
 - □ CD containing: project Documentation, Implementation code, Required utilities, Software's and Manuals.
 - Every student must prepare well formatted, printed and hard bound report.
- 3. Internal guide has to interact at least once in the fortnight and maintain the progress and attendance report during the term.
- 4. Make sure the internal project guide are BE graduates.
- 5. Convener should make sure that external examiner are appointed from the list as per appropriate technical area

