University of Mumbai Syllabus Structure(R-2007)

At

S.E. (Computer Engineering) Semester-III

Sr.	Subject	Scheme o	f Instructions	Scheme of Evaluation			n	
No.			s per Week eriod of 60					
			Min.					
		Theory	Practical	Po	ıper	TW	Practical	Total
		Theory	Tactical		Marks	1 **	&Oral	Total
1.	Applied	*05		3	100	25		125
	Mathematics-III							
2.	Electronic	04	02	3	100	25	25	150
	Devices & Linear							
	Circuits							
3.	Discrete Structure	03	02	3	100	25		125
	& Graph Theory							
4.	Digital Logic	03	02	3	100	25		
	Design &							125
	Application							
5.	Data Structure	04	02	3	100	25	25	150
	and Files							
6.	Computer	03	02	3	100	25		
	Organization &							125
	Architecture							
7.	Presentation and	02	02			50		50
	Communication							
	Techniques							
		24	12	18	600	200	50	850

^{*}After four conjugative periods test should be conducted at fifth period and the assessed papers should be considered as a part of term work.

University of Mumbai				
Class: S.E.	Branch: Computer	Semester: III		
	Engineering			
Subject: Applied Mathematic	es –III (Abbreviated as AM-III))		
Periods per Week	Lecture	05		
(each 60 min)	Practical	00		
	Tutorial			
		Hours	Marks	
Evaluation System	Theory	03	100	
	Practical / Oral			
	Oral			
	Term Work		25	
	Total	03	125	

Module	Contents	Hours
1	Laplace Transform:	
	• Function of bounded variation, Laplace Transform of	
	standard functions such as 1, t^n , e^{at} , $\sin at$, $\cos at$, $\sinh at$, $\cosh at$, $erf(t)$	
	• Linearity property of Laplace Transform, First Shifting	03
	property, Second Shifting property, Change of Scale property of L.T.	07
	$L\{t^n f(t)\}, L\left\{\frac{f(t)}{t}\right\}, L\left\{\int_0^t f(u)du\right\}, L\left\{f^n(t)\right\}$	
	Heaviside Unit step function, Direct Delta function, Periodic	
	functions and t their laplace Transform.	
	• Inverse Laplace Transform: Linearity property, use of	
	theorems to find inverse Laplace Transform, Partial fractions method and convolution theorem (without proof).	06
	• Applications to solve initial and boundary value problems	
	involving ordinary differential equations with one dependent variable.	03
2	Matrices(I):	
	• Types of matrices, Adjoint of a matrix, Inverse of a matrix, orthogonal matrix, unitary matrix, Rank of a matrix, reduction to normal form PAQ, Linear dependence and independence of rows/columns over a field.	07
	• System of homogeneous and non-homogeneous equation, their consistency and solutions.	04
3	Fourier Series:	
	• Orthogonal and orthonormal set, Expressions of a function in a series of orthogonal functions. Dirichlet's conditions. Fourier series of periodic function in the interval $[c, c + 2\pi]$, $[c, c + 2l]$.	08

	• Dirichlet's theorem even and odd functions. Half range sine	
	and cosine series, Parsevel's identities (without proof)	04
	Complex form of Fourier series	02
	Practical harmonic analysis	02
4	Fourier Transform:	
	Introduction, Fourier integrals-Fourier sine and cosine integrals,	06
	Fourier sine and cosine transform, Linearity property, change of	
	scale property, shifting property, convolution theorem(without	
	proof)	
5	Z-transform:	
	Z-transform of standard functions such as $Z(a^n)$, $Z(n^p)$, Linearity	06
	property, damping rule, shifting rules, Initial & Final value theorem,	
	convolution theorem (all without proof),	
	idea of Inverse Z- transform.	
6	Use of Scilab(Computer Software) to solve integral transform.	02

TERM WORK:

- 1. Based on above syllabus at least 10 tests assessed papers (10 marks)
- 2. One term test of 100 marks like university pattern must be conducted and scaled to 10 marks.
- 3. Attendance 05 marks.

- 1 Elements of Applied mathematics, P N & J N Wartikar, Pune Vidarthi Gruha Prakashan
- 2 Advanced Engineering Mathematics, E Kreyszing, Wiley Eastern Limited
- 3 Advanced Modern Engineering Mathematics, Glyn James
- 4 Fourier Transform, Schuam Series
- 5 Higher Engineering Mathematics, B. V. Ramanna, Tata McGraw Hill

University of Mumbai				
Class: S.E.	Branch: Computer	Semester: III		
	Engineering			
Subject: Electronics Devices	and Linear Circuits (Abbrevia	ted as EDLC)		
Periods per Week	Lecture	04		
(each 60 min)	Practical	02		
	Tutorial			
		Hours	Marks	
Evaluation System	Theory	03	100	
	Practical and Oral	02	25	
	Oral			
	Term Work		25	
	Total	05	150	

Module	Contents	Hours		
1	Bipolar Junction Transistor: - BJT modeling, the hybrid equivalent	07		
	model, Graphical determination of the H parameters. Negative			
	feedback			
2	Field Effect Transistor :- Construction of JFETs, Transfer	08		
	characteristics, FET small signal Model, JFET configurations			
	(Fixed bias, self bias, voltage divider, source follower and common			
	gate), Common source amplifier.			
3	Operational Amplifier: Introduction, block diagram representation,	08		
	Analysis of equivalent circuit, the ideal op-amp, open loop op-amp			
	configuration			
4	Practical op-amp – Input offset voltage, input bias current, Input	09		
	offset current, Total output offset voltage, Thermal drift, effect of			
	variation in power supply voltage on offset voltage, Common mode			
	configuration and common mode rejection ratio.			
5	General linear application, Comparators and Converters: - AC – DC	09		
	amplifier, Summing amplifier, Instrumentation amplifier, the			
	integrator, the differentiator, zero crossing detector, Schmitt trigger,			
	Analog to digital and Digital to analog converter			
6	Timer & Voltage regulator:-The IC 555 timer, monostable and	07		
	astable multivibrator, PLL, voltage regulator(fixed, adjustable,			
	switching regulator)			

TERM WORK:

List of Experiments:-

- Study of Characteristics of FET.
- Study of RC coupled amplifier involving negative feedback
- Study of JFET amplifier
- Study of variable voltage power supply using operational amplifier.
- Study of inverting Amplifier.
- Study of Non- inverting amplifier.
- Study of Inverting adder. & subtractor.
- Study of Non- inverting & inverting comparator.
- Study of Schmitt trigger.
- Study of square wave generator.
- Study of triangular wave generator.
- Study of IC555 as Astable multivibrator / monostable multivibrator.

Note: -

- As per the pattern of university question paper, the question no. 1 which is compulsory question of 20 marks should cover all contains of syllabus
- Term work of 25 marks to be allotted as 15 marks for practical performance & attendance in theory lectures and 10 marks for unit test.

- 1. Electronics Devices & Circuits by Robert L. Boylestad ,Louis Nashelsky , PHI Publication
- 2. Electronics Devices and circuits by S Salivahanan ,N.sureshkumar,A Vallavaraj ,TATA McGraw Hill Publication
- 3. Circuits, Devices & Systems by Ralph J. Smith , Richard C. Dorf , Wiley India Pvt. Ltd.
- 4. Electronics Laboratory Prime a Design Approach by S. Poorna Chandra , S Chand Publication
- 5. Sergio Franco, 'Design with op-amp and analog integrated circuits,' Tata McGraw Hill series.
- 6. Op-amp and linear integrated circuits by Ramakant A. Gayakwad , PHI Publication
- 7. 'Semiconductor Data Manual', BPB Publications.
- 8. 'Data Book volume I and II', Elektor India.
- 9. "TTL / CMOS Data book", Semiconductor, Texas Instruments.

University of Mumbai				
Class: S.E.	Branch: Computer	Semester: III		
	Engineering			
Subject: Discrete Structure &	Graph Theory (Abbreviated	as DSGT)		
Periods per Week	Lecture	03		
(each 60 min)	Practical	-		
	Tutorial			
		Hours	Marks	
Evaluation System	Theory	03	100	
	Practical and Oral	1		
	Oral			
	Term Work		25	
	Total	03	125	

Module	Contents	Hours
1	Set Theory	03
	 Sets , Venn diagrams, Operations on sets 	
	 Laws of set theory, Power set and products 	
	• Partitions of sets, The Principle of Inclusion-Exclusion 3	
2	Logic	04
	 Propositions and logical operations, Truth tables 	
	Equivalence, Implications	
	 Laws of logic, Normal Forms 	
	Predicates and Quantifiers	
	Mathematical Induction	
3	Relations, Diagraph and Lattices	07
	 Relations, paths and digraphs; 	
	 Properties and types of binary relations; 	
	 Manipulation of relations, closures, Warshall's 	
	algorithm;	
	 Equivalence and Partial ordered relations; 	
	 Posets and Hasse diagram; 	
	• Lattice.	
4	Functions and Pigeon Hole Principle:	04
	 Definition and types of functions : injective, surjective 	
	and bijective;	
	 Composition, identity and inverse; 	
	 Pigeon-hole principle. 	

5	Graphs	04
	 Definition; 	
	 Paths and circuits: Eulerian, Hamiltonian; 	
	 Planer graphs, Graph coloring 	
	 Isomorphism Of Graphs 	
	 Traveling salesperson problem 	
6	Trees	03
	 Trees, Rooted tree and path length in rooted tree 	
	 Spanning tree and minimum spanning tree 	
	 Isomorphism of trees 	
	 Weighted Trees and Prefix Codes 	
7	Algebraic Structures	07
	 Algebraic structures with one binary operation - 	
	semigroups, monoids and groups.	
	 Product and quotient of algebraic structures 	
	 Isomorphism, homomorphism, automorphism; 	
	 Cyclic Groups, Normal subgroup, Codes and group 	
	codes	
	 Algebraic structures with two binary operations - rings, 	
	integral domains and fields.	
	Ring Homomorphisms and Isomorphisms	
8	Generating Functions and Recurrence Relations.	04
	 Series and Sequences; 	
	 Generating functions; 	
	 Recurrence relations; 	
	 Applications: Solving Differential equations, Fibonacci 	

Text Books:

- 1. Ralph P. Grimaldi, B. V. Ramana, "Discrete and Combinatorial Mathematics" Fifth Edision, Pearson Education.
- 2. Bernard Kolman, Robert C. Busby ,Sharon Cutler Ross, Nadeem-ur-Rehman, "Discrete Mathematical Structures" Pearson Education.
- 3. D. S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson

- 1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", Tata McGraw-Hill.
- 2. Garry Haggard, John Schlipf, Sue Whitesides. "Discrete Mathematics For Computer Science", Thomson.
- 3. Joe Mott, Abraham Kandel and Theodore Baker, "Discrete Mathematics for Computer Scientist and Mathematicians", Second Edition PHI
- 4. Richard Johnsonbaugh, "Discrete Mathematics" Pearson Education
- 5. C. L. Liu, "Elements of Discrete Mathematics" Tata McGRAW-Hill

University of Mumbai				
Class: S.E.	Branch: Computer	Semester: III		
	Engineering			
Subject: Digital Logic Design	n and Application (Abbreviat	ted as DLDA)		
Periods per Week	Lecture	03		
(each 60 min)	Practical	02		
	Tutorial			
		Hours	Marks	
Evaluation System	Theory	03	100	
	Practical and Oral			
	Oral			
	Term Work		25	
	Total	03	125	

Module	Contents	Hours
1	Number systems: Decimal, Binary, Octal and Hexadecimal	07
	number system and conversion, Number system's application e.g.	
	shaft encoding, Binary weighted codes, Signed number binary order,	
	1's and 2's complement codes, All number system's arithmetic.	
	Boolean Algebra: Binary logic functions, Boolean laws, Truth	
	Tables, Associative and distributive properties, Demorgan's	
	Theorem, Realization of switching functions using logic gates.	
2	Combinational logic: Switching equations, Canonical logic forms,	06
	Sum of product & Product of sum, karnaugh maps, two, three & four	
	variable karnaugh graph, Simplification of expression Quine-	
	mccluskey minimization techniques, Mixed logic combinational	
	circuits, Multiple output functions.	
3	Analysis and design of combinational logic: Introduction of	07
	combinational circuits, Multiplexer and demultiplexer,, Multiplexers	
	as function generator, Binary adder, Substractor, BCD adder, Binary	
	comparator with physical applications, Arithmetic and logic units,	
	Design of combinational circuits using statements.	
4	Sequential Logic: Sequential circuits, Flip flop conversions,	05
	Clocked and edge triggered flip flops timing specifications, Timing	
	analysis, state diagrams and tables, transition tables, Excitation table	
	and equations, Examples using flip flops.	
5	Sequential Circuits: Simple synchronous and asynchronous	06
	sequential circuit analysis, Different types of counters asynchronous	
	and synchronous, Counter Design with state equations, Registers,	
	Different types of Shift registers, Construction of state diagram and	
	counter design.	
6	Digital integrated circuits: Digital circuit logic levels, Propagation	05

delay times, Power dissipation, Fan out and fan in, Noise margin for popular logic families, TTL, TTL sub families, CMOS and their performance comparison(Numericals expected)

TERM WORK

- 1. Term work should consist of at least 8 practical experiments duly graded (Desirable 10 experiment) and two assignments covering all the topics of the syllabus.
- 2. A term work test must be conducted with a weightage of 10 marks covering complete syllabus.

List of experiments:

- 1. Study of Basic Gates and Universal Gates.
- 2. Realization of logical expression using Universal Gates and Basic Gates.
- 3. Binary Arithmetic circuits I) Adder II) subtractor.
- 4. Implement certain functions using multiplexers [16:1, 8:1, 4:1]
- 5. Design and implement 4:1 multiplexer with strobe I/P active low using NAND & NOR Gate.
- 6. To design & implement any one code converter [e.g. Excess-3, BCD -- Gray] using Decoder & Demultiplexer.
- 7. To design & implement 4-bit parity generator/ checker using
 - I) Minimum number of gates.
 - II) IC 74180.
- 8. Design of 7-segment display using decoder [IC 7447]
- 9. Design of JK Flipflop using NAND gates and verification of the same flip flop using IC 7476.
- 10. Design of asynchronous Up & Down Counter.
- 11. Design of synchronous counter.
- 12. Design of random sequence generator.
- 13. Design of shift register using flip flops verification of different modes.
- 14. Verification of function table of universal shift register IC 74194.
- 15. Compare propagation delay and transfer characteristic of TTL & CMOS gates [use odd no. of gates].

Text Books:

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. John F. Wakerly, "Digital Design Principles and Practices", Pearson Education, Russia
- 3. M. Morris Mano, "Digital Logic and computer Design", PHI.

- 1. John M. Yarbrough, "Digital Logic", Thomson Learning.
- 2. Samuel Lee, "Digital Circuits and Logic Design", PHI.
- 3. Charles H. Roth, "Fundamentals of Logic Design, (4 th Edition)", Junior Jaico Book.

University of Mumbai				
Class: S.E.	Branch: Computer	Semester: III		
	Engineering			
Subject: Data Structure and I	Files (Abbreviated as DSF)			
Periods per Week	Lecture	04		
(each 60 min)	Practical	02		
	Tutorial			
		Hours	Marks	
Evaluation System	Theory	03	100	
	Practical and Oral	02	25	
	Oral			
	Term Work		25	
	Total	05	150	

Pre-requisites: A Course in Object Oriented Programming Language such as (JAVA)

Module	Contents	Hours
1	Introduction to Data Structures:	05
	 Definition 	
	• The Abstract Data Type(ADT)	
	 Arrays 	
	• Strings	
	Recursion	
2	File Handling:	04
	File Organization	
	 Types of files 	
	File operations	
3	Sorting and Searching:	07
	A. Sorting	
	• Insertion sort	
	 Selection sort 	
	• Exchange sort (Bubble, Quick)	
	 Merge sort 	
	 Heap sort 	
	B. Searching:	
	Linear Search	
	Binary Search	
	Hashing Technique and collision handling	
4	Stack:	03
	• The Stack as an ADT	
	 Representation 	

	Stack Operations	
	• Applications	
5	Queue:	03
	 Operation on Linked List Linked Stacks and Queues The Linked List as a Data Structure Array implementation of Linked List Linked List using Dynamic variable Comparison of Dynamic and Array implementation of Linked List Doubly Linked List Circular Linked List 	
7	Trees: Basic tree concepts Binary Tree Operations and Applications Binary Tree representations Binary Tree Traversals Threaded Binary Tree The Huffman Algorithm Binary Search Tree Implementation Expression Trees Introduction of multiway tree (B-Tree, B+ Trees, AVL Tree)	12
8	Graphs:	04

TERM WORK

Term work should consist of graded answer papers of the test and 12 implementations using object oriented constructs & concepts. Students are expected to build their own classes and methods. Built-in classes are not to be used (preferably). Each student is to appear for atleast one written test during the Term. Each implementation must consist of Problem Statement, Brief Theory, Algorithm, Flowchart and Conclusion.

Topics for Implementation

- 1. String functions, Recursion and Files
- 2. Implementations of Stack & Queues (Circular & Priority)
- 3. Implementation of Linked Lists (Singly & Doubly)
- 4. Implementation of Searching & Sorting methods
- 5. Implementation of Binary Tree
- 6. Implementation of Graph

Text Books:

- 1. Y. Langsam, M.J. Augenstein and A.M. Tanenbaum, "Data Structures Using Java", Pearson Education.
- **2.** R.F. Gilberg and Behrouz A. Forouzan, "Data Structure: A Pseudocode Approach with C", Thomson Edition .
- 3. Michael Goodrich & Roberto Tamassia, "Data structures and algorithms in Java^{JM}", Second Edition, Wiley India Edition.

- 1. John R. Hubbard and Hurry "Data structures with Java", Pearson Education.
- 2. Mark Allen Weiss, "Data Structure & Algorithm Analysis in C++", Third Edition, Pearson Education.
- 3. Sanjay Pahuja, "A Practical to Data Structure & Algorithms", First Edition, New Age International Publisher.
- 4. Alan L. Tharp "File organization and processing", Amazon Publication.

University of Mumbai			
Class: S.E.	Branch: Computer	Semester: III	
	Engineering		
Subject: Computer Organizat	tion and Architecture (Abbrevi	iated as COA)	
Periods per Week	Lecture	03	
(each 60 min)	Practical	02	
	Tutorial		
		Hours	Marks
Evaluation System	Theory	03	100
	Practical and Oral		
	Oral		
	Term Work		25
	Total	03	125

Module	Contents	Hours
1	Basic structure of computer	04
	Introduction of computer system and its sub modules, Basic	
	organization of computer and block level description of the	
	functional units. Von newmann model, Introduction to buses and	
	connecting I/O devices to CPU and memory, Asynchronous and	
	synchronous bus, PCI, SCSI.	
2	Arithmetic and Logic Unit.	07
	Arithmetic and logical unit hardware implementation, Booth's	
	Recoding, Booth's algorithm for signed multiplication, Restoring	
	division and non restoring division algorithm, IEEE floating point	
	number representation and operations.	
3	Central processing unit.	06
	CPU architecture, Register organization, Instruction formats and	
	addressing modes (Intel processor)., Basic instruction cycle,	
	Instruction interpretation and sequencing, Control Unit operation,	
	Hardwired control unit design methods and design examples,	
	Multiplier control unit, Micro programmed control unit, basic	
	concepts, Microinstruction sequencing and execution, Micro	
	operations, concepts of nanoprogramming, Introduction to RISC and	
	CISC architectures, design issues and examples of RISC processors.	0.7
4	Memory Organization.	07
	Characteristics of memory system and hierarchy, concepts of	
	semiconductor memories, main memory, ROM, EPROM, RAM,	
	SRAM, DRAM, SDRAM, RDRAM, , Flash memory, Stack	
	Organization. High speed memories: Cache memory organization	
	and mapping, replacement algorithms, cache coherence, Interleaved	
	and associative memories, Virtual memory, main memory	
	allocation, segmentation paging, Secondary storage, RAID, optical	
	memory, CDROM, DVD.	

5	I/O Organization.	03
	Input/Output systems, Programmed I/O, Interrupt driven I/O, I/O	
	channels, DMA, Peripheral Devices, U.S.B.	
6	Multiprocessor Configurations.	04
	Flynn's classifications, parallel processing concepts, Introduction to	
	pipeline processing and pipeline hazards, design issues of pipeline	
	architecture, Instruction pipeline, Instruction level parallelism and	
	advanced issues.	
7	SPARC	03
	Static and Dynamic data flow design, Fault tolerant computers,	
	Interprocessor communication and synchronization, cache	
	coherence, shared memory	
	multiprocessor.	
8	Systolic Architectures	02
	Systolic arrays and their applications, wave front arrays.	

TERM WORK:

Based on above syllabus at least 10 experiments and one written test of 10 marks to be conducted.

Text Books:

- 1. Miles Murdocca, "Computer Architecture and Organization", Wiley India
- 2. William Stallings, "Computer Organization and Architecture: Designing and performance": Prentice-Hall India
- 3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky "Computer Organization", McGraw Hill

- 1. John L. Hennessy and David Patterson," Computer Architecture A Quantitative Approach", Morgan Kaufman
- 2. Andrew S. Tanenbaum," Structured Computer Organization", Prentice-Hall India

University of Mumbai			
Class: S.E.	Branch: Computer	Semester: III	
	Engineering		
Subject: Presentation and	d Communication Technic	jues(Abbrevia	ated as PCT)
Periods per Week	Lecture	02	
(each 60 min)	Practical	02	
	Tutorial		
		Hours	Marks
Evaluation System	Theory		
	Practical and Oral		
	Oral		
	Term Work		50
	Total		50

	Contents	Hours
1.	Communication in a business organization: Internal and external communication, Types of meetings, strategies for conducting successful business meetings, documentation (notice, agenda, minutes, resolution) of meetings. Introduction to modern communication techniques. (e-mail, internet, video-conferencing, etc.) Legal and ethical issues in communication (Intellectual property rights: patents, TRIPS, Geographical indications).	05
2	Advanced technical writing: Report writing: Definition and importance of reports, qualities of reports, language and style in reports, types of reports, formats (letter, memo, project-repots). Methods of compiling data for preparing report. A computer-aided presentation of a technical project report based on survey-based or reference based topic. The topics are to be assigned to a group of 8-10 students. The written report should not exceed 20 printed pages. Technical paper-writing, Writing business proposals.	07
3	Interpersonal skills: Introduction to emotional intelligence, motivation, Negotiation and conflict resolution, Assertiveness, team-building, decision-making, time-management, persuasion	03

4	Presentation skills: Elements of an effective presentation, Structure of a presentation, Presentation tools, Audience analysis, Language: Articulation, Good pronunciation, Voice quality, Modulation, Accent and Intonation.	03
5	Career skills: Preparing resumes and cover letters. Types of Resumes, Interview techniques: Preparing for job interviews, facing an interview, verbal and non-verbal communication during interviews, observation sessions and role-play techniques to be used to demonstrate interview strategies (mock interviews).	03
6	Group discussion: Group discussions as part of selection process. Structure of a group discussion, Dynamics of group behavior, techniques for effective participation, Team work and use of body language.	03

Term work:

Part-I (25 Marks): Assignments;

Two assignments on communication topics

Three assignments on report-writing

Three assignments on interpersonal skills

Two assignments on career skills

At least one class test (written)

Distribution of term work marks will be as follows:

Assignments : 10 marks
Written test : 10 marks
Attendance (Theory and Practical) : 05 marks

Part-II (25 Marks): Presentation;

Distribution of term work marks will be as follows:
Project report presentation : 15 marks
Group discussion : 10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text books:

- 1. Lesikar and Petit, *Report writing for business*, Tata McGraw Hill.
- 2. Raman and Sangeeta Sharma, *Technical communication*, Oxford University Press, New Delhi.

- 1. Wallace & Masters, *Personal development for Life & work*, Thomson Lerning.
- 2. Heta Murphy, Effective Business Communication, McGraw Hill.
- 3. Huckin & Olsen, *Technical writing and professional communication*, McGraw Hill.
- 4. Fred Luthans, Organizational behavior, McGraw Hill.